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Calculations for anemometry with fine hot wires 

By W. W. W O O D  
Melbourne University, Victoria, Australia 

(Received 21 September 1965 and in revised form 30 October 1967) 

The heat transfer appropriate to low Reynolds number hot-wire anemometry is 
calculated from the full non-linear equations of motion and of heat transfer by 
an iterative method starting with the Oseen solution and its heat flux analogue. 
The second and third iterates yield close agreement with measured data. 

1. Introduction 
When a hot-wire anemometer is calibrated with the wire effectively normal to a 

steady uniform stream and is used in an oblique or unsteady flow, it is desirable to 
know how accurately the calibration heat loss can be ascribed to two-dimensional 
forced convection. End effects, if present, may impair the accuracy of the cosine 
rule for oblique velocities (Corrsin 1963) or the response time in unsteady flow. 
The cosine rule is also invalid if buoyancy is significant. To expose these and other 
extraneous sources of heat loss, it is useful to have at  hand comparative heat 
transfer data, that is, data on forced, two-dimensional convection from circular 
cylinders with uniformly hot surfaces. 

For sufficiently small Reynolds numbers R the relatively few available experi- 
mental measurements can be supplemented fairly readily by calculation. The 
convection velocity in the heat equation may be replaced, to a first approxima- 
tion, by the free-stream velocity (Cole & Roshko 1954), as in Oseen’s equation 
for the viscous flow. The resulting Nusselt numbers, one variant of which denoted 
Nl appears below, are of O(log-l R) with an error generally of O( l~g-~Rf .  Kigher 
approximations follow after correcting iteratively for the convection velocity 
in the temperature equation, and, when needed, in the vorticity equation. The 
present paper adds the first two of these succeeding Nusselt number approxima- 
tions, N2 and N3, which are in error by O ( l ~ g - ~ l i )  and O( l~g-~ l i )  respectively. 

of 0.72 and diameter- 
based Reynolds numbers R up to 0.8 are shown in figure 1, together with the 
measured data of Collis & Williams (1959). End effects were kept small in their 
experiments and corrections were made both for metallic conduction along the 
wire and for temperature jump at its surface. Natural convection could be recog- 
nized when results for different wire diameters were correlated and those results 
perceptibly affected by buoyancy were discounted. It will be seen that for Rey- 
nolds numbers R less than 0.3, the second and third approximations N2 and N3 
lie within 1 % of the experimental values. For R beyond 0.3, the calculated and 
experimental values diverge rapidly. 

The N,, N, and N3 evaluated for a Prandtl number 
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Because of the susceptibility of the heat loss at small Reynolds numbers to 
buoyancy, it may be worth recapitulating Collis &Williams's (1959) criterion that 
for horizontal wires of large aspect ratio the efFects of free convection can be 
ignored when R exceeds 1.09G0'3g( 1 + TW/T,)O'76, where T, and T, denote re- 
spectively the wire and the ambient temperature and G denotes the Grashof 
number based on diameter and ambient values of the physical constants. This 
criterion was derived for Reynolds numbers less than about 0.1. For a discussion 
of the relevant experimental evidence the reader is referred to the original paper. 

2. Velocity approximation 
We shall consider the steady convection of heat from a circular cylinder of 

uniform surface temperature T, in an air current of temperature T, and speed 
U,. The density p, viscosity v, conductivity k and specific heat cp of the air will 
be regarded as constants, and viscous heating will be ignored. As units of speed 
and length we adopt respectively U, and the cylinder diameter d. Suitable equa- 
tions for determining the heat flux are then 

au av -+- = 0, 
ax ay 

I (u ,v )=(O,O) ,  T = T ,  for . 9+y2=$ ,  

(u ,v )+( l ,O) ,  T+T, for x2+y2+co, 

where (x, y) are Cartesian co-ordinates, (u, v) is the velocity, C the vorticity and 
T the temperature. 

The velocity is independent of temperature and has to be determined first. 
Kaplun (1957) and Proudman & Pearson (1957) have specified the velocity to 
the approximation we shall require. Their results are not presented, however, in 
a form convenient for immediate application to the temperature equation, and 
so will be derived again. Also a slightly different approach is adopted. Previously 
the region where x, y is O(1) (the Stokes region) and the region where x, y is 
O(R-1) (the Oseen region) were treated separately. Asymptotic expansions for 
the velocity were sought separately for R < 1 and given x, y and for R 4 1 and 
given Rx, Ry and were linked by reordering the expansions in the zone where the 
regions of validity overlap. In  this way were obtained two asymptotic expansions 
for the velocity in powers of log-l R, one valid for given x, y (the Stokes expansion) 
and the other at given Rx, Ry (the Oseen expansion). The alternative approach 
adopted here is to proceed from Oseen's equation by iteration. The velocity is 
derived directly from the appropriately modified Oseen equation, as in Lamb's 
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solution. The no-slip condition is thereby assimilated without recourse to separate 
expansion near the cylinder and to matching processes, and the calculation is 
correspondingly somewhat shorter. 

We begin, then, with Oseen's equation 

and represent the velocity by 

With a minor change, Lamb's approximate solution is 

(2.3) 

(2.4) 

where p, I9 are Oseen variables, with p = R ( ~ ~ + y ~ ) 3 / 3  and I9 = 0 in the down- 

Here and below the I, and K ,  denote Bessel functions of imaginary argument 
defined as in Watson's well-known treatise. Since R is small, 

D(iR) = - log(iR) + 4 - y + O(R210g R), (2.6) 

where y = 0.677 ... is Euler's constant. The approximation above differs from 
Lamb's only in the replacement of -log(iR) + +--y by the combination D($R), 
which arises when the no-slip condition at  the cylinder is satisfied precisely. 

So far the velocity is given correct to O(1og-l R)  uniformly over the region of 
flow, this being the highest accuracy Oseen's equation allows. For the purpose 
in hand, however, a uniform approximation is not required. In  the Oseen region 
we want the velocity as accurately as is feasible, whereas in the Stokes region we 
can tolerate errors in velocity of O( 1). The reason is that the velocity is needed 
only to evaluate the convection terms, first in the vorticity equation and then in 
the temperature equation. In  the Oseen region these convection terms will be 
evaluated to sundry orders of log-l R times the accompanying diffusion terms, 
but in the Stokes region these convection terms are only of O(R) times the 
accompanying diffusion terms and so may be neglected altogether. Consequently 
it becomes permissible to curtail Lamb's solution to 

x = - 2e3&Ko(p)/D(gR), 9 = 2logp/D($R). (2.7) 

The velocity so determined will be called the first Oseen approximation and is 
correct to O(1og-l R) in the Oseen region and correct to O( 1) in the Stokes region. 
(In the language of the matched expansion procedure, (2.7) is, in effect, the Oseen 
expansion for the velocity to O(1og-1 R);  and the Oseen expansion is adequate to 
cope with convection in the vorticity equation in both Oseen and Stokes regions 
because, after expansion, the convection terms drop out of the vorticity equa- 
tion for the Stokes region.) 

For the next velocity approximation, we rewrite the vorticity equation as 
1 ac - + A  = -VzC, R 

8X 
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where 
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The added convection term A is to be evaluated from the first Oseen approxima- 
tion and can be regarded here as known. The velocity is again to be represented 
by means of (2.3), and a fresh determination of 4 and x is to be made to incor- 
porate A. After use of (2.3)) the vorticity equation (2.8) yields 

(2.10) 

where A has been assumed integrable, and x and 9 have been chosen so that their 
derivatives vanish at infinity. We now put 

a, 

0 
Ady = &Re*RxC An(p)cosn6' 

co 

0 
= $R Z A:@) cosn6. 

(2.11) 

The convection term A is thereby represented by An and A:. When A is deter- 
mined from the first Oseen approximation (2.7)) we obtain 

and Sni denotes Kronecker's delta. The A: may then be determined from the 

A: = (1  - %) 2 ~rn[In+rn(p) + ~n-rn(p)l* (2.13) 

In  the Oseen region, wherep = O( l ) ,  the An and A: are all of O(0-2) = O(log-2R), 
corresponding to A being O(log-2 R) smaller than the diffusion term of the vor- 
ticity equation. Where p is o( 1)) 

An by 

m=O 

(2.14) I A, and A t  = O(log2p/log2 R), 
A, and A: = O(pn-210gp/log2R) (n 3 1). 

A suitable solution of (2.10) for $ and x, and hence for u, v, is 

(2.15) 



The A ,  Bo and B, are disposable constants, which will be fixed by satisfying the 
no-slip condition approximately. First, however, we consider separately the part 
of the solution that remains when these constants are zero, using a bar to dis- 
tinguish the corresponding values of &, xn, @, x, u and v. The particular solution 
U, ii so defined already accounts for the added convection term A in the vorticity 
equation and satisfies the boundary condition at infinity. In  the Oseen region, 
(U, 3) is O(log-2R). For fixed p, which may be small, 

- 

(2.17) I xo = 0(1/log2R), a and !?&? = O(plog2p/log2 R), 
dP dP 

xn, p-, dXn 7, and p-- 4 J n  = O(pnlog2p/log2R) (n  2 1). 
dP d f  

Thence, in the Stokes region, where p = O(R), the particular solution U, ii is 
given by 

[plY,(p)A,-2pKo(p)Ao-A:]dp+O(R),  V = O(R). (2.18) 

The integrand, incidentally, is bounded for small p, because the singularities 
in A, and AT at p = 0 cancel. Thus, apart from terms of O(R), the particular 
solution U, V comprises simply the velocity at  infinity plus a uniform streamwise 
velocity of O(log-2 R). To complete the solution, we need to subtract a solution 
of Oseen’s equation (2.2) with zero velocity at infinity and the appropriate 
uniform velocity over the cylinder. This can be accomplished by using Lamb’s 
solution, with a trivial resealing to accommodate the integral of (2.18), and is 
given effect by putting 

A = -2( ~ + a S , - r P ~ , ~ P ~ ~ 1 - ~ P ~ 0 ~ P ~ ~ 0 - ~ : 1 d p  1 l%R), 1 (2.19) 

Bo = - A ,  B, = R2A/32. 

The velocity determined by (2.15), (2.16) and (2.19) then vanishes at  the cylinder 
to O(R) and is uniformly correct to O(log-2R), which is as accurate as one itera- 
tion of Oseen’s equation allows. 

It is not proposed to consider higher approximations. Further, as mentioned 
before, errors of O(1) in the velocity can be tolerated in the Stokes region for 
the present application. So, for simplicity, we shall take B, = 0. With this modi- 
fication, the velocity just derived is accurate to O(log-2 R) in the Oseen region 
and is accurate to O(1) in the Stokes region. We shall refer t o  this modified 
approximation as the second Oseen approximation. 
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Whilst the emphasis here is on the specific application to hot wires, the deriva- 
tion of a higher-order approximation to velocity has an underlying theme whichis 
strikingly simple, and, though no longer new, it should not perhaps be passed 
over without comment. The salient points emerging here and brought out earlier, 
particularly clearly by Kaplun (1957), are that (i) in an approximation in which 
velocities of O(log-, R) are retained and velocities of O(R) are neglected, vorticity 
convection is significant only in the Oseen region; (ii) when convection terms 
(presumed known from previous approximation to velocity) are inserted in 
Oseen’s equakion, they can be accommodated by a particular solution (U ,  G )  for 
velocity which satisfies the boundary condition at infinity and which, because 
of the relatively large region in which convection is effective, is approximately 
uniform ( = u0 say) over the entire Stokes region. The complete velocity approxi- 
mation appropriate to the convection terms inserted in Oseen’s equation is then, 
of course, given by adding to (U ,V)  Lamb’s solution of Oseen’s equation for a 
cylinder moving with velocity - uo in still fluid. 

3. Temperature approximation 
Similar approximations are now evolved for the heat equation. We write 

where 

aT 1 
- + A T  = - V’T, 
ax VR 

aT aT R co 

A, = (u - 1 )  -- + v - = - egrxR 2 ATn cos no. 
ax ay 4 n=O 

If at a stage of iteration T is expressed as 
00 

T = T, + eltUxR c Tn(p) cosne, (3.3) 
n=O 

and $ and x are as in (2.1!5), then the coefficients in (3.2) are defined by 

00 

‘A,, = @n + ( 1  - PnO) C Xm[Im-n(P) + Im+n(~lI, 
rn=O 

where 

(3.4) I x n  = (1 - & L o )  P a t o  TTl + Toxn) - 2x; T:, - 2T; x; - dATn-1+ Tn+l) 
+ TA(Xn-I+ ~ n + l )  + xo[TA-l + TA+l+ ( l / P )  ((1 - ?a)%-,+ (1  + n)%+iII 
-VTO[XA-l+xA+l+ ( l /P)(( l -n)xn-l+ (1 +n)x,+1)31, 

+~To[$A--l-t- $;+I+ ( I / ~ ) ( ( l - n )  $,-I+ (1+n)$n+l)II, 
an = ( 1  - &LO) !X$ATA + & FA) + ~ $ 8 % - ~  + Tn+lj 

with = x-l = xl, T-, = TI. 

Products $,Tm and x,T,, with both n and m greater than zero are omitted 
because only the first three iterative approximations to the heat transfer are to 
be calculated. For this purpose only the two leading non-trivial iterative ap- 
proximations to AT and hence to ATn are needed. The leading approximations 
to u, v and T involve #o, xo and To, cf. (2.7) and (3 .7) ,  and the higher-order #,, 
xn and T, (n  2 1) respectively are at  least one order of log-l R smaller. Thus the 
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products referred to are at least two orders smaller than the correspond,ing lead- 
ing products q50To and xoTo and can be neglected. The same is equally true of the 
products q5nTA, etc., with n and m greater than zero, which include derivatives. 

The approximation succeeding (3.3) can now be written as 
W 

T = T, +e'uxR X [anKn(cp) + aIn(flp) 1' m pATnKn(flp)d/J 
n=O 

where, to make T = T, at the cylinder, we take 

an = {(-2)n(Tw-T,)+aJm pATnKn(~p)dp) (n 2 0) (3.6) 
Kn($cR) 33 

2: 0 for n 2 1. 

The error in temperature due to assuming an to be zero for n B 1 is O(R) and will 
be neglected. 

The first; three approximations to T can now be enumerated. The 'Oseen 
approximation' corresponding to AT = 0 will be taken as 

T(1) = Tm + a$,l)eiuzEKo(ap), (3-7) 

with 

which is a result given first in a different form but with an error of the same order 
in R by Cole & Roshko (1954). For the second approximation, AT ( =A$) say) 
will be evaluated from (3.4) with u,  v and T defined by the first Oseen approxima- 
tions, (2 .7 )  and (3.7). Accordingly the components A$L associated with A($) 
become 

4% = 2gA $'{Ko(a;~) ((1 - i sno )  [L(p)Ko(p) + 'A(p)K,(p)l - Qsnllp} 

- Kl(qp) (1 - sno) [&(P)K~(P) + I A ( P W O ( P ) I } -  (3.9) 

The second approximation to T and a (denoted by T(2) and a(2)) is now given 
by (3.5) and (3.6) with the ATn represented by (3.9). For the third approximation, 
AT (=A$)) is evaluated from the second Oseen approximation to the velocity 
specified in the preceding section and from the T(2) just defined (or more precisely 
from the concomitant Tg)). After some algebra, (3.4) then yields for the compo- 
nents A$l, of A$?: 

= OIA ap log2p( 1 + A logp)] 
= O[log2p/log2R], 

= O[p"-2logp/log2R], 
A'& = O[Aai1)pn-2logp(l + A  logp)] (n  2 1) 

(3.10) 



the I, and K, having arguments p unless otherwise indicated. 
The expression for c, is the same as for d, with the K,(ap)/p omitted and the 

K,+,(p), r = - 1,0,1 replaced by ( - l)?+lI,+,(p). Likewise the expression for a, 
is the same as for b, but with ( - ly+lI,+,.(vp) instead of K,+,(vp). 

The A, were defined in (2.12) and A: and AT by (2.13). The order estimates 
for the A$L apply also to the preceding approximation AgL. The A(& with n 2 1 
are not specified explicitly because the numerical computation is confined to 
the heat flux from the cylinder which is seen immediately below to involve 
only A$&. 

Turning now to the heat transfer from the cylinder, we have 

(3.13) i 
i = a,J(TW - T,) + O(R2 log R) 

where use has been made of the orders of magnitude (3.10) of the relevant ap- 
proximations to ATn. Thence, after successively substituting 0, A'& and A$& 
for Aro and after some computation, we get the successive approximations to 
Nusselt number : 

(3.14) 
$1 = Io(iflR)/Ko(iflq ( =&, say), 
N2 = N1-hQ2/D(tR), 

N3 = N2-pQ2/D2(iR), 

where 

the error in each N, being O(log-r-2R). For a Prandtl number = 0.72 the 
numerical coefficients h and p were found to be h = 1-38 and p = 0-40. The varia- 
tion in h over a small range of neighbouring values of c is shown in table 1. The 
second coefficient '0.40' yields only 6 %  of N u  for R = 0.4 and for smaller R 
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mostly yields much less. For this reason and the length of computation involved, 
the sensitivity of p to variations in 

Fortunately, the contributions to the second numerical coefficient from the 
terms a, k,, + b,i,, + c, k, + d,i, in the expression for A$!& diminished extremely 
rapidly with increasing n. For n 2 1 these contributions, multiplied by a factor 
4, were 

was not investigated. 

(a1kTl) 1.77 (bliT1) -0.14 (Clkl) -0.51 (d l i1)  -0.46 

(a2kT2) 0.01 (b2 i~2)  -0.001 (Czk2)  -0.01 (d2i2) -0.001 

(a3kT3) 0.0001 

where the source is exhibited in brackets. Preliminary estimates of the higher- 
order a,k,,, bniTn, c,k, and d,i, indicated that the further contributions were 
insignificant, and only those displayed were computed at all accurately. 

c7 h 
0.6 1-250 
0-7 1.363 
0.8 1-466 
0.9 1.560 
1 .o 1.644 

TABLE 1. Coefficient h required for N ,  

The second and third approximations are plotted in figure 1 together with a 
smoothed curve from the measured data of Collis & Williams (1959) in which 
allowance has been made for three-dimensional effects and for temperature jump 
at the cylinder. The agreement at Reynolds numbers less than 0.3 is within about 
1 % in N .  Precise error bounds are not available, either for the calculation or the 
experiments, but it seems probable thak the second and third approximations 
are, at least for R < 0.3, a substantial improvement on the simple 'first Oseen' 
approximation N,, which was derived in a reduced form of equivalent accuracy 
by Cole & Roshko (1954) and was the best previous result. 

All these approximations have been derived on the understanding that both 
R and VR are small, so, for fluids with large Prandtl number, the maximum 
Reynolds numbers for which the approximations hold can be expected to be 
correspondingly reduced. 

Finally, attention is drawn to the composition of the approximations for 
temperature (which closely parallels that of the higher approximations for 
velocity). The main elements in their derivation are that: (i) to an approximation 
in which temperatures of O(log-" R) are retained and temperatures of O(R) 
are neglected, thermal convection is significant only in the Oseen region; (ii) when 
corrective convection terms A, (presumed known from previous approximation 
to temperature) are inserted in the thermal Oseen equation, they can be accommo- 
dated by a particular solution for temperature which satisfies the condition 
at infinity and which, because again of the relatively large extent of the region 
in which thermal convection is effective, is approximately uniform (=to  say) 

2 Fluid Mech. 32 
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over the entire Stokes region; (iii) the temperature approximation defined from 
Oseen’s equation with A, presumed known may be adequately completed by 
adding to the particular solution an approximate solution of the thermal Oseen 
equation, say T = - tolVN,e~uxRKo(q), which gives T = -to+ O(R) at the cylinder 
and T = 0 a t  infinity. 

I I i I I 

log, (BR) 

001 01 

R 
1 

FIGURE 1. Heat transfer approximations. 

The particular solution T just referred to can be taken to be given by (3.5) with 
all the a, zero. Then, in the Stokes region 

which apart from terms of O(R) is uniform, as noted. 

(3.15) 

The author is grateful to Mr H. K. Cheesman for the extensive computation 
involved and to the Chief Scientist, Department of Supply, Australia, for per- 
mission to publish. 
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